Kushal Das

FOSS and life. Kushal Das talks here.

kushal76uaid62oup5774umh654scnu5dwzh4u2534qxhcbi4wbab3ad.onion

Another try at a new Python module for OpenPGP aka johnnycanencrypt

Using OpenPGP from Python is a pain. There are various documentation/notes on the Internet explaining why, including the famous one from isis agora lovecraft where they explained why they changed the module name to pretty_bad_protocol.

sequoia-pgp is a Rust project to do OpenPGP from scratch in Rust, and as library first approach. You can see the status page to see how much work is already done.

Using this and Pyo3 project I started writing an experimental Python module for OpenPGP called Johnny Can Encrypt.

I just did an release of 0.1.0. Here is some example code.

>>> import johnnycanencrypt as jce
>>> j = jce.Johnny("secret.asc")
>>> data = j.encrypt_bytes("kushal 🐍".encode("utf-8"))
>>> print(data)
-----BEGIN PGP MESSAGE-----

wcFMAwhsWpR1vDokAQ//UQGjrmmPLP0Td8pELf8XZEPh6fY9Xad6XHH6vQjGwvjG
36kK8ejRqyLbZpwVOO1FUfiZt6AyaeIEeEagoolMxmFl67mWBHsw5Z2NUPhydAwJ
EX+VdFn6CtRzQ0xG3T7rOCrsR50COO13gc4fIAn7Rxj1DyjqlFvur10FNnxRm0iJ
jnOwPnWVWKwoROzevfQd1Oef0n4nbkDUuyrS9oHSRFhFF/9I9bGtJhho0VIIcmFG
YVkhR0+QROTZ4edKotUg0R3UUfHmfwT0XcybGWMG/8Nh3W8pYuxwDdtbSMNDZzxu
o9TdpLrgoRIkhyGmuYWrURrRN1hmce5B6XOagWu7aKL7pFhP7Vd6LLoliDwY4G6x
1yKHbSo/1FEof7WBDujCksuVedUO8Gs9giitR/p/U9PBadeyiW0CKTYiTURkkNiF
g79lVfbmM54eZ9zmU+PraVNpekYXvH3o+lvXd5T39mo4Y/dv2fDCjo2aiZ/bE56Q
yn/0Hhmj2ikrsUk3NcuhO4zxt+VLctJt+lfk+R2hal+6NTaRkREdprPp4ltAt/bm
8xwBmqp+FDdxGgY+ItJkG69vsIf4WpPsvBI37fVbeYqrPsaz9NGlz2QKdfQvaH7j
R7rgxf24H2FjbbyNuHF3tJJa4Kfpnhq4nkxA/EdRP9JcVm/X568jLayTLyJGmrbS
PAHlVMLSBXQDApkY+5Veu3teRR5M2BLPr7X/gfeNnTlbZ4kF5S+E+0bjTjrz+6oo
dcsnTYxmcAm9hdPjng==
=1IYb
-----END PGP MESSAGE-----

>>> result = j.decrypt_bytes(data.encode("utf-8"), "mysecretpassword")
>>> print(result.decode("utf-8"))
kushal 🐍

The readme of the project page has build instruction, and more details about available API calls. We can create new keypair (RSA4096). We can encrypt/decrypt bytes and files. We can also sign/verify bytes/files. The code does not have much checks for error handling, this is super early stage.

You will need nettle (on Fedora) and libnettle on Debian (and related development packages) to build it successfully.

I published wheels for Debian Buster (Python3.7), and Fedora 32 (Python3.8).

Issues in providing better wheels for pip install

The wheels are linked against system provided nettle library. And every distribution has a different version. Means even if I am building a python3.7 wheel on Debian, it will not work on Fedora. I wish to find a better solution to this in the coming days.

As I said earlier in this post, this is just starting of this project. It will take time to mature for production use. And because of Sequoia, we will have better defaults of cipher/hash options.